Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jiíí Urban, ${ }^{\text {a** }}$ Jirí Ludvik, ${ }^{\text {a }}$ Jan

 Fábry ${ }^{\text {b }}$ and Ivana Císařová ${ }^{\text {c }}$${ }^{\mathrm{a}}$ J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Praha 6, Czech Republic, ${ }^{\mathbf{b}}$ Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic, and ${ }^{\text {c }}$ Faculty of Science, Charles University, Hlavova 2030, 12843 Praha 2, Czech Republic

Correspondence e-mail: fabry@fzu.cz

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.052$
$w R$ factor $=0.140$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Anthracene-9-carbaldehyde hydrazone

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}$, the geometric parameters are normal, within experimental error. The molecules are arranged in pairs, with their hydrazone groups oriented towards one another.

Comment

During our investigation of the chemical and electrochemical properties of the azine grouping $>\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}<$ (Riedl et al., 1996; Zuman \& Ludvík, 2000), various azine and hydrazone derivatives have been synthesized, including the title compound, (I), derived from anthracene-9-carbaldehyde.

For comparison with the distances in (I), a search of the Cambridge Structural Database (CSD, Version 5.24; Allen, 2002) was carried out and yielded 24 hits. The search considered structures containing anthracene, not involved in π-bonding with a metal, and with R factors <0.09. The bond lengths within the anthracene rings of (I) are in accordance with those found in the search, except for slight deviations of the bond-lengths of the pairs $\mathrm{C} 9-\mathrm{C} 11, \mathrm{C} 9-\mathrm{C} 13$ and $\mathrm{C} 10-$ C12, C10-C14 (Fig. 1), which are $\sim 0.022 \AA$ longer and $0.008 \AA$ shorter, respectively, than in pure anthracene. The reason why the chemically equivalent bonds $\mathrm{C} 9-\mathrm{C} 11, \mathrm{C} 9-$ C 13 are longer than $\mathrm{C} 10-\mathrm{C} 12, \mathrm{C} 10-\mathrm{C} 14$ (Table 1) is probably due to the substituent on C9.

Neither atom N 1 nor atom N 2 lies in the plane of the central aromatic ring $A(\mathrm{C} 9 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 10 / \mathrm{C} 14 / \mathrm{C} 13)$. The dihedral angle between the plane through atoms $\mathrm{N} 1, \mathrm{C} 15, \mathrm{C} 9$ and plane A is $42.9(2)^{\circ}$. The $\mathrm{N} 1-\mathrm{N} 2$ bond length of 1.387 (2) \AA is significantly longer than the $\mathrm{N}=\mathrm{N}$ bond length in azo compounds $(\sim 1.25 \AA)$, as shown by a search of the CSD. [Compounds with a fragment $\mathrm{C} \cdots \mathrm{C} \cdots \mathrm{N} \cdots \mathrm{N} \cdots \mathrm{C} \cdots \mathrm{C}$ were searched for, with coordination number 3 for C and 2 for N . The value of $\sim 1.25 \AA$ corresponds to the maximum (more than 700 hits) in the distribution of $\mathrm{N} \cdots \mathrm{N}$ bond lengths.] On the other hand the $\mathrm{N} 1-\mathrm{N} 2$ bond length is shorter than that in the compounds containing hydrazinium (1+) molecules where the average value is 1.435 (7) \AA, according to 36 hits from the CSD.

Received 28 March 2003
Accepted 7 April 2003
Online 23 April 2003

Figure 1
View of the title molecule, with 40% probability displacement ellipsoids (PLATON; Spek, 2002).

Figure 2
Crystal packing in the unit cell (PLATON; Spek, 2002).

This comparison shows that the $\mathrm{N}-\mathrm{N}$ bond in (I) (Table 1) has a bond order close to one. The bond length between atoms C15 and N1 [1.272 (2) Å] corresponds, however, to a typical double bond, that is $\sim 1.28 \AA$ (Box \& Yu, 1997).

The hydrazone groups are oriented towards each other, ordering the molecules into hydrogen bonded pairs (Fig. 2). The geometry of the $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{~N} 1$ contact points to a weak hydrogen bond (Table 2).

Experimental

9-Anthraldehyde (1.4 g) was diluted in 30 ml of ethanol, and 0.34 ml of hydrazine hydrate was added under heating. After slow cooling the mixture was kept in a refrigerator overnight. The crystals formed were isolated, washed by ethanol and dried. The yield was 1 g of the title compound, whose identity and purity was checked by thin-layer chromatography and NMR spectra. If one-half of the quantity of hydrazine hydrate was used and the mixture was refluxed for 5 h , the corresponding azine was produced. However, no suitable crystals could be obtained.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \\
& M_{r}=220.27 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=17.7211(9) \AA \\
& b=3.9082(2) \AA \\
& c=16.4115(9) \AA \\
& \beta=103.856(3)^{\circ} \\
& V=1103.55(10) \AA^{3} \\
& Z=4 \\
& D_{x}=1.325 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

[^0]
Data collection

Nonius KappaCCD diffractometer

ω scans

Absorption correction: none
2169 measured reflections
2169 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.140$
$S=1.10$
2169 reflections
177 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0758 P)^{2}\right. \\
& +0.0918 P \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.107 \text { (10) } \\
& \text { Extinction coefficient: } 0.107 \text { (10) }
\end{aligned}
$$

1628 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.0^{\circ}$
$h=0 \rightarrow 21$
$k=-4 \rightarrow 4$
$l=-20 \rightarrow 19$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.357(2)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.415(2)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.429(2)$	$\mathrm{C} 9-\mathrm{C} 13$	$1.419(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.409(2)$	$\mathrm{C} 9-\mathrm{C} 15$	$1.471(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.350(2)$	$\mathrm{C} 10-\mathrm{C} 14$	$1.387(2)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.425(2)$	$\mathrm{C} 10-\mathrm{C} 12$	$1.388(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.360(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.438(2)$
$\mathrm{C} 5-\mathrm{C} 13$	$1.427(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.436(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.405(3)$	$\mathrm{C} 15-\mathrm{N} 1$	$1.2709(19)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.346(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.3870(19)$
$\mathrm{C} 8-\mathrm{C} 14$	$1.432(2)$		
$\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 9$	$123.94(15)$	$\mathrm{C} 15-\mathrm{N} 1-\mathrm{N} 2$	$116.84(15)$
$\mathrm{N} 1-\mathrm{C} 15-\mathrm{H} 15$	$119.2(10)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	$108.9(15)$
$\mathrm{C} 9-\mathrm{C} 15-\mathrm{H} 15$	$116.8(10)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$	$112.5(15)$

Table 2
Hydrogen-bonding geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1N2 $\cdots \mathrm{N} 1^{\mathrm{i}}$	$0.86(2)$	$2.47(2)$	$3.233(2)$	$147.9(19)$
Symmetry code: (i) $1-x, 2-y, 1-z$				

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

The support of this study by the grants 203/02/0436 of the Grant Agency of the Czech Republic and A4040304 of the Grant Agency of the Academy of Sciences of the Czech Republic is gratefully acknowledged.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Box, V. G. S. \& Yu, W. H. (1997). J. Chem. Educ. 74, 1293-1296.
Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.

organic papers

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Riedl, F., Ludvík, J., Liška, F. \& Zuman, P. (1996). J. Heterocycl. Chem. 33, 2063-2063.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON for Windows. Version 200902. University of Utrecht, The Netherlands.
Zuman, P. \& Ludvík, J. (2000). Tetrahedron Lett. 41, 7851-7853.

[^0]: Cell parameters determined with Mo $\mathrm{K} \alpha$ radiation
 Mo K α radiation
 Cell parameters from 4704
 reflections
 $\theta=1.0-26.0^{\circ}$
 $\mu=0.08 \mathrm{~mm}^{-1}$
 $T=291$ (1) K
 Plate, yellow
 $0.30 \times 0.20 \times 0.08 \mathrm{~mm}$

